Compression of Auditory Space during Forward Self-Motion
نویسندگان
چکیده
BACKGROUND Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these movements modulate auditory perceptual processing. Here, we investigate the effect of the linear acceleration on auditory space representation. METHODOLOGY/PRINCIPAL FINDINGS Participants were passively transported forward/backward at constant accelerations using a robotic wheelchair. An array of loudspeakers was aligned parallel to the motion direction along a wall to the right of the listener. A short noise burst was presented during the self-motion from one of the loudspeakers when the listener's physical coronal plane reached the location of one of the speakers (null point). In Experiments 1 and 2, the participants indicated which direction the sound was presented, forward or backward relative to their subjective coronal plane. The results showed that the sound position aligned with the subjective coronal plane was displaced ahead of the null point only during forward self-motion and that the magnitude of the displacement increased with increasing the acceleration. Experiment 3 investigated the structure of the auditory space in the traveling direction during forward self-motion. The sounds were presented at various distances from the null point. The participants indicated the perceived sound location by pointing a rod. All the sounds that were actually located in the traveling direction were perceived as being biased towards the null point. CONCLUSIONS/SIGNIFICANCE These results suggest a distortion of the auditory space in the direction of movement during forward self-motion. The underlying mechanism might involve anticipatory spatial shifts in the auditory receptive field locations driven by afferent signals from vestibular system.
منابع مشابه
Distortion of auditory space during visually induced self-motion in depth
Perception of self-motion is based on the integration of multiple sensory inputs, in particular from the vestibular and visual systems. Our previous study demonstrated that vestibular linear acceleration information distorted auditory space perception (Teramoto et al., 2012). However, it is unclear whether this phenomenon is contingent on vestibular signals or whether it can be caused by inputs...
متن کاملAcoustic facilitation of object movement detection during self-motion.
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a fl...
متن کاملAuditory space perception during linearly self-motion
Spatial inputs from the auditory periphery can be changed with listener's various movements relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these moveme...
متن کاملCompression of Human Motion Animation Using the Reduction of Interjoint Correlation
We propose two compression methods for the human motion in 3D space, based on the forward and inverse kinematics. In a motion chain, a movement of each joint is represented by a series of vector signals in 3D space. In general, specific types of joints such as end effectors often require higher precision than other general types of joints in, for example, CG animation and robot manipulation. Th...
متن کاملCross-modal influences on representational momentum and representational gravity.
Effects of cross-modal information on representational momentum and on representational gravity (ie on displacement of remembered location in the direction of target motion or in the direction of gravitational attraction, respectively) were examined. In experiment 1, ascending or descending visual motion (in the picture plane) was paired with ascending or descending auditory motion (in frequenc...
متن کامل